SirT1 is an inhibitor of proliferation and tumor formation in colon cancer.
نویسندگان
چکیده
The NAD-dependent deacetylase SirT1 regulates factors involved in stress response and cell survival and is a potential drug target of activators and inhibitors. Determination of SirT1 function in tumor cells is important for its targeting in cancer therapy. We found that SirT1 knockdown by short hairpin RNA accelerates tumor xenograft formation by HCT116 cells, whereas SirT1 overexpression inhibits tumor formation. Furthermore, pharmacological inhibition of SirT1 stimulates cell proliferation under conditions of growth factor deprivation. Paradoxically, SirT1 inhibition also sensitizes cells to apoptosis by chemotherapy drugs. Immunohistochemical staining revealed high level SirT1 in normal colon mucosa and benign adenomas. SirT1 overexpression was observed in approximately 25% of stage I/II/III colorectal adenocarcinomas but rarely found in advanced stage IV tumors. Furthermore, approximately 30% of carcinomas showed lower than normal SirT1 expression. This pattern is consistent with SirT1 having pleiotropic effects during cancer development (anti-proliferation and anti-apoptotic). These results suggest a rationale for the use of SirT1 activators and inhibitors in the prevention and treatment of colon cancer.
منابع مشابه
Altered expression of Lnc-OC1 and SIRT1 genes in colorectal cancer tissue
Backgrounds: SIRT1 plays an important role in many physiological processes, including metabolism, neuronal protection, senecence and inflammatory, by staging histones and multiple transcription factors. However, the complex mechanisms of SIRT1 signaling in tumors are not yet fully understood, as it acts as both an oncogen and a tumor suppressor. On the other hand, it has been shown that the Lnc...
متن کاملHaploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development
SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, plays a vital role in the regulation of metabolism, stress responses, and genome stability. However, the role of SIRT1 in the multi-step process leading to transformation and/or tumorigenesis, as either a tumor suppressor or tumor promoter, is complex and may be dependent upon the context in which SIRT1 activity is altered,...
متن کاملThe SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth
Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD(+)-dependent deacetylases is proposed to und...
متن کاملEffects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain
Objective(s): Several beneficial effects have been attributed to the probiotic lactic acid bacteria. It was determined that lactobacilli can exert antiproliferative effects on the various cancer cell lines including colon cancer. Effects of lactic acid bacteria on colon cancer may vary from strain to strain and there is a need to find the new probiotic strains with tumor suppressing properties ...
متن کاملmiR-34a repression of SIRT1 regulates apoptosis.
MicroRNA 34a (miR-34a) is a tumor suppressor gene, but how it regulates cell proliferation is not completely understood. We now show that the microRNA miR-34a regulates silent information regulator 1 (SIRT1) expression. MiR-34a inhibits SIRT1 expression through a miR-34a-binding site within the 3' UTR of SIRT1. MiR-34 inhibition of SIRT1 leads to an increase in acetylated p53 and expression of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 27 شماره
صفحات -
تاریخ انتشار 2009